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Abstract

We present a comprehensive empirical study of the Evidence Lower Bound (ELBO)
landscape in variational inference, addressing fundamental questions about the ge-
ometric properties of its local maxima and their connectivity. While prior work has
suggested the existence of Minimum Energy Paths (MEPs) connecting local optima
in the ELBO parameter space, systematic empirical validation remains incomplete.
We adapt the string method to construct MEPs and introduce a novel visualization
approach using random vector projection to analyze the ELBO landscape. Through
extensive experiments on Latent Dirichlet Allocation with the AP dataset, we (1)
provide the first empirical evidence for the existence of continuous low-energy
paths between local maxima, (2) demonstrate that these paths preserve semantic
interpretability of topics, and (3) quantify the generalization performance of solu-
tions along MEPs. Our findings reveal previously unknown geometric properties
of the ELBO landscape and provide practical insights for initialization strategies in
variational inference.

1 Introduction and Motivations

In variational inference, one maximizes the ELBO using CAVI. Due to the non-convex nature of the
ELBO optimization objective, CAVI converges to a local maximum sensitive to initialization. In this
project, we investigate the landscape of the ELBO by empirically analyzing the relationship between
local maxima obtained in a hierarchical graphical model. This will help VI practitioners to interpret
the different local maxima that CAVI reaches, e.g. many local maxima are symmetrical and induced
due to label switching of cluster assignment[1]. We are intrigued by the questions such as whether a
linear interpolation of local maxima gives other local maxima and whether there are other geometric
properties between these local maxima apart from their symmetry. It has been previously suggested
that in the parameter space of ELBO, there is a connected region of low objective value, also known
as Minimum Energy Paths (MEPs), between two local maxima[1]. Nevertheless, the experimental
results of this phenomenon of mode connectivity in ELBO are not complete. In this project, we:

1. adapt and implement the string method proposed by [2] to find the Maximum Energy Paths
(MEPs) in the ELBO loss landscape, thereby validating the hypothesis of their existence;

2. provide a visualization of the ELBO loss landscape using random vector projection;

3. empirically investigate the interpretations of the MEPs beyond heuristic explanations; and

4. evaluate whether the points along the MEPs perform well on out-of-sample data.

We use the LDA model with the AP dataset for this project due to computational limits (we will
further discuss the choice of model and dataset in the criticism section). In the following section,

∗Equal contribution.



Algorithm 1 NEB Maximum Energy Path Construction for ELBO

Input: initial path p(0) with N+2 pivot, γ (learning rate)
p
(0)
0 ← θ1

p
(0)
N+1 ← θ2

for t = 1, . . . , T do
for i = 1, . . . , N do

Compute perpendicular force FL
i |⊥

Compute horizontal force FS
i |∥

Fi ← FL
i |⊥ + FS

i |∥
p
(t)
i = p

(t−1)
i + γFi

end for
end for
return final path p(T )

we will present the algorithm adapted from the string method to find the MEPs in the ELBO loss
landscape and the method for visualizing the landscape. Then, we will demonstrate the result of
MEP construction with a visualization of the ELBO loss landscape. In particular, we show the results
of the MEPs and loss landscape of different initializations with different hyperparameters. We will
discuss the results in accordance with the topic discovered and the most probable words to illustrate
the concept of label-switching proposed by [1]. Our code can be found on the GitHub link Here.

2 The Model, ELBO and Maximum Energy Path (MEP)

The maximum energy path describes the path with the highest objective (ELBO) value between two
local extremal points of the optimization objective function (ELBO). We use the following method to
obtain such a path.[1][2]

First, we find two sets of variational parameters denoted as θ1 = (λ1, γ1, ϕ1) and θ2 = (λ2, γ2, ϕ2)
that maximize the ELBO with different initializations using CAVI. To find the MEP between
them, we assume there exists a continuous path p∗ with high ELBO values between the two sets
of variational parameters θ1, θ2. In low-dimensional space, such a path is easy to construct using
dynamical programming. For high-dimensional space, such an approach is infeasible. Instead, we
use a method called Nudged Elastic Band (NEB) to approximate the path. The state of art method
was inspired by a method for connecting extrema in statistical mechanics. We adapted the method for
finding the MEPs for ELBO. Suppose the path between θ1 and θ2 can be approximated using N + 2
pivots p0, . . . , pN+1, where p0 = θ1 and pN+1 = θ2. The goal is to find the path through these
pivots that minimizes the energy function E(p) (which in our case is the negative ELBO objective
plus the spring energy):

E(p) =

N∑
i=1

L(pi) +

N∑
i=0

1

2
k∥pi+1 − pi∥2

where L(pi) = −ELBO(pi) and k is the spring constant that prevents the adjacent pivots from
stretching too far apart. This minimization problem will produce a path that has low energy and is
relatively smooth.

The NEB method uses forces, which are the gradient of the negative ELBO objective with
respect to each pivot parameter, to update the parameters of the pivots, thus minimizing the negative
ELBO (maximizing ELBO) on the path. The force at each pivot can be divided into the loss force
and the spring force: Fi = −∇pi

E(p) = FL
i + FS

i . In our case, FS
i is simply k · (pi − pi+1), and

the FL
i is the gradient of negative ELBO with respect to pi: ∇ELBO(pi). To intuitively understand

these two forces, the spring force moves the pivots closer to each other whereas the loss force moves
the pivots in direction of maximum increase of their ELBO values. These together minimize the total
energy E(p).
To minimize the energy, the NEB "nudge" the force so that the loss force acts perpendicularly to the
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path and the spring force only acts in the parallel direction of the path. And the update rules are:

FL
i |⊥ == −(∇ELBO(pi)− (∇ELBO(pi) · τ̂i))
FS
i |∥ == (FS

i · τ̂i)τ̂i
where τ̂i is defined as:

τ̂i = N
{
pi+1 − pi, if L(pi+1) > L(Pi − 1)

pi − pi−1, else

where N normalizes the resulting parameter vector. The forces act as "gradients", and the update
rule for the NEB method is simple gradient descent with learning rate λ : pi(t) = pi(t− 1) + λFi.
Algorithm 1 describes the full algorithm.

3 ELBO Loss Landscape Visualization

To visualize the ELBO loss landscape, we adapt the visualization method for neural networks
proposed by[3] . To visualize the high-dimensional variational parameter space, we use a random
projection method to project points in high-dimensional space into 2-dimensional space and graph
the ELBO values of the different variational parameters in the low-dimensional space. We find two
random orthonormal vectors to form the basis of the 2-d space and then project the parameters onto
this 2-d space. To illustrate this, we can see Figure 1 in which we have two random orthogonal
directions u and v and a center point w1. We obtain the 2-dimensional embedding (x, y) of a high-
dimensional variational parameter θ by first centering the parameters at w1 and then projecting the
parameters to u and v respectively. This means that

xproj = (θ − w1) · u (1)
yproj = (θ − w1) · v (2)

We then plot the sets of 2-d embeddings of pivots on the MEP as well as the two local maximums
attained θ1, θ2. We also plot a loss surface grid on which we evaluate the ELBO corresponding to
each point in the grid and plot the pivots on the grid. The grid is constructed by first choosing the
center w1 as the midpoint between θ1 and θ2. Then, we construct a matrix with values at (x, y) being
the ELBO value evaluated at w1 + xu+ yv.

Figure 1: Loss landscape visualization method
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4 Experimental Results and Discussion

In this section, we present the experimental results where we finetuned the hyperparameters and
discuss the effects of hyperparameters and other relevant findings.

4.1 Finding Local Maxima.

We ran two independent CAVI with independent starting points to find two sets of local maxima to be
the two end points of the MEP. As shown in the appendix, we fixed the number of topics and ran
CAVI until convergence.

4.2 Path Construction and Hyperparameters.

For the path construction, we tested on the AP dataset with three different learning rates: 0.5, 0.1, 0.01
with a spring constant of 0.01. For learning rates of 0.1 and 0.5, the NEB method encounters some
numerical issues at around 30 epochs and 10 epochs respectively, which is when we stopped the
training (seen in Figure 2 (a) and (b)). Nevertheless, due to the large learning rate, the model
constructed paths with clearly high ELBO values than the linear interpolation. For a learning rate
of 0.01, the model makes little progress on finding a path with low energy, even with 100 iterations
(seen in Figure 2 (d)). The best learning rate we figured out is lr = 0.1 shown in Figure 2 (a) which
shows a relatively flat path among the other plots. From the graphs, we can see that the pivots on the
path have higher ELBO values after each iteration and the ELBO value approaches those of the two
local maxima θ1, θ2.

(a) lr = 0.1 with 100 iterations (b) lr = 0.5 with 17 iterations

(c) lr = 0.01 with 30 iterations (d) lr = 0.01 with 100 iterations

Figure 2: MEP path construction and the ELBO values using different learning rates

From the above plot, we can see that the constructed final path is a path with much higher ELBO
values than the linear interpolation of points in the parameter space. The results match our intuitions
and serve as a numerical validation that there is no barrier between two local maxima in the ELBO
landscape.

For the number of pivots, we tested on N = 3, 5, 10, 20 (seen in Figure 3). For all N shown in Figure
3 (a), we obtained an almost linear path and found points that have a higher ELBO value than the
initial local maxima. To systematically study the ELBO path generation, we chose N = 10 for the
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(a) Results for pivot count N = 3 (b) Results for pivot count N = 5

(c) Results for pivot count N = 7 (d) Results for pivot count N = 15

Figure 3: MEP path construction and the ELBO values using different number of pivots

other following experiments. For the spring constant, we tested with K = 0.1 0.005, and 0.001. What
is surprising is that during the MEP construction, the algorithm even found parameters that have a
higher ELBO value than the two maxima found by CAVI as shown in Figure 5 (a). This suggests that
the MEP algorithm may be a way to find new local maxima.

We also tested the different number of topics C assumed for the LDA model. The results suggest
that the number of topics does not influence the construction of MEP but the corresponding ELBO
values are different as shown in Figure 4. Nevertheless, the highest log posterior predictive occurs at
K = 20 as shown in the appendix. This can be interpreted as evaluating the goodness of fit of the
model and that when K = 20, the model is more able to make predictions of words for unseen parts
of the out-of-sample data. This is reasonable since when the number of topics is too small, it may not
be able to capture the distinct themes across documents and may be too generic. As the number of
topics increases, more distinctive themes may arise and the resulting model becomes more capable of
capturing the common themes.

4.3 Quality of parameters

To evaluate the quality of the sets of parameters found along the MEPs, we tested the predictive
likelihood score on both the training data set and the test data set (seen in Figure 6). To our surprise,
while the final MEP pivots have increased performance on the training dataset, they have a smaller
log predictive likelihood. This means that the trained pivots have worse generalization abilities than
untrained ones. This is surprising since it suggests that the linear interpolation between the two
local maxima has even better generalization abilities on the held-out dataset. We have not yet found
explanation for this.
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(a) topic = 5 (b) topic = 15

Figure 4: MEP construction and effects of different number of topics

(a) k=0.001 (b) k = 0.005

(c) k = 0.1 (d) k = 0.01

Figure 5: MEP construction and different string constant k
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(a) predictive score of θ on the path for testing
data

(b) predictive score of θ on the path for train-
ing data

Figure 6: Predictive score of parameters on the MEP

4.4 Visualization

To visualize the ELBO landscape with the method above, we used two different approaches to find the
set of orthogonal random vectors as a basis for projection: the first one is to draw two vectors ∈ Rd

from random multivariate Gaussian distributions. The other approach is to generate two orthogonal
vectors with a high-dimensional Bernoulli. The results are as follows.

(a) Gaussian random vector projection land-
scape (b) Orthogonal vector projection landscape

Figure 7: Visualization of the ELBO loss landscape where the red curve is the MEP found using the
path construction and the blue curve is the interpolation between θ1, θ2

Here, the red line is the constructed path between the two local maxima whereas the blue line is a
linear interpolation between two local maxima. It is clear that the red line is above the blue line and
the landscape, which means the path we generated is a "max ELBO" path that connects the two local
maxima. However, the loss landscape (the loss on the grid) did not quite match with the path and the
linear interpolation, which may be that multiple high-dimensional vectors are projected onto the same
point in the 2-dimensional space. Moreover, the non-convexity of the landscape was not captured
by the grid which may be due to that when constructing the grid, we only sampled a local region
around the center of the grid which may correspond to a basin in the actual ELBO landscape. To
better capture the landscape of ELBO, we need to reconsider the scale at which we construct the grid.

4.5 Interpretation of topics and words

To interpret the sets of parameters along the MEPs, it is interesting to look at the topics and words
discovered along the path. We can use the fitted variational parameters to approximate the posterior
topics E[βk|x]. Here, we choose two pivots along the path and find the most probable words of each
topic, and compare them with the words of topics from two initial local maxima. For columns 1 and
2 of θ1, the topics can be summarized as political economics and military actions. If we look at the
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first column of pivot 1, it is mostly about bills and military actions, which is the combination of the
first two columns of θ1. This corresponds to Blei’s (2018) argument about label switching between
sets of parameters found by the ELBO optimization. Another example is that the fourth column in
pivot 2 is about federal actions on federal bills, which is split into education and bills in column 9,
column 3, and column 8 in θ2. This can be summarized as non-identifiability, which means that the
topics are fundamentally non-separable and thus exists many ways to summarize them.

(a) Most probable words from topics according to θ1

(b) Most probable words from topics according to pivot1

(c) Most probable words from topics according to pivot2

(d) Most probable words from topics according to θ2

Figure 8: Most probable words from each topic, with K = 10

5 Criticism

There are several drawbacks and potential improvements to our research and experiments: First of all,
it is hard to assess the convergence of the NEB. The NEB methods heavily rely on hyperparameter
tuning and thus make it difficult to have a convergence criterion. To solve this, we could implement
Auto-NEB, which discards the hyperparameter k, and redistributes the pivot every iteration. The
method can also automatically add more pivots to deal with the more complex landscape as needed.
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Second, when plotting the ELBO landscape with the visualization method, we found that the ELBO
of points on the landscape did not quite match the path we constructed. Our assumption is that when
embedding a high-dimensional vector into a 2-dimensional vector, there is a great chance that many
different high-dimensional vectors are projected onto the same 2-dimensional vector, which causes
the mismatch issue. Moreover, as suggested above, the scale at which we graph the grid may be
too local which resembles a concave space and does not capture the non-convexity of the ELBO
landscape. Thus, we may need to reconsider the scale that we sample points around the center point.

6 Future Works

Based on the explorations and experiments, the next step towards exploring the ELBO landscape is to
try different visualization techniques and path construction techniques. A different path construction
procedure was proposed by [3] based on Bezier curve parametrization of the path. One can also
explore the symmetry structure of the landscape and try to experimentally see whether there exist
symmetrical landscapes which may correspond to label switching. Also, it was suggested by [4] that
a wider and deeper neural network may produce a flatter region than MEPs and thus we hypothesize
that a similar phenomenon may be true for the ELBO loss landscape corresponding to a deeper
hierarchical model with more parameters. This can be investigated in future works. Moreover,
theoretical analysis of the ELBO loss landscape is beneficial for establishing and formal framework
to characterize the ELBO loss and theoretically explain the meaning of different sets of variational
parameters.
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Appendix

Github link

https://github.com/LeonLixyz/6701_Project

Dataset

AP dataset with each article as a sparse vector of length equal to the size of the vocabulary. The LDA
graphical model is as follows.

Figure 9: Graphical Model of LDA

Further Details about the Model and Experiments

Data Generation Process and the Posterior. The data is assumed to be generated from a mixed
membership model (LDA). We first fix the number of topics and for each topic K, for each k from 1 to
K, we draw βk from a categorical distribution on the vocabulary. Each βk is a vector representing the
probability of each word belong to each topic. These parameters are shared across all documents and
using this, we would be able to discover common structure of words which are grouped into different
topics. Then, for each document, we draw a topic proportion θi from a categorical distribution over
all topics. Each vector represents the amount each topic is expressed in the current document. Then,
for each word (j) in the current document (i), we draw topic assignment zij from the categorical
distribution which was drawn in the previous step. Lastly, we draw the specific word xij from a
categorical distribution from the β vector of the assigned topic. With this generative model, we
compute the log posterior which is

log p(β, θ, z|x) =
K∑

k=1

log p(βk) +

n∑
i=1

log p(θi)+ (3)

n∑
i=1

m∑
j=1

(log p(zij |θi) + log p(xij |zij , β))− log p(x) (4)

Since this posterior is intractable to compute, we use variational inference to approximate the
posterior distribution.

Variational Inference. To approximate the posterior p(β, θ, z|x), we use the variational
family q(β, θ, z; v) which is parametrized by the variational parameters v. For this homework, I used
the mean-field family which is consistent with the lecture. The goal is to find the optimal v∗ such that
the difference between the approximate distribution and the actual posterior distribution is minimized.
The objective function for minimization is the KL divergence which is

KL(q(β, θ, z; v)||p(β, θ, z|x)) (5)

Expanding the KL divergence and upon further derivations, we can derive the ELBO and it was
shown in the lecture that maximizing the ELBO is equivalent to minimizing the KL divergence, i.e.

ELBO = Eq[log p(β, θ, z, x)]−Eq[log q(β, θ, z; v)] (6)

To maximize the ELBO, we use the coordinate ascent variational inference (CAVI) which iteratively
updates each variational parameter until convergence of the ELBO objective.
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Predictive Score. We used the generalization idea about the completion which is that
given some observed words from the held-out dataset and the in-sample data, can we predict
the unobserved words? The log predictive probability of the unobserved words indicates the
generalization ability of the model. The partially-observed predictive score is calculated as

Λpartial(K) =

nout∑
i=1

log p(xnew
out,i|xobs

out,i, xin;K) (7)

We used this criterion to evaluate the model and hyperparameters.

Convergence of ELBO Below are some of the ELBO convergence plots generated when
finding the two maxima points.

Figure 10: Convergence of ELBO objective with 3 restarts

Figure 11: ELBO convergence with K = 5
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Figure 12: ELBO convergence with K = 10

Figure 13: ELBO convergence with K = 15
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Figure 14: ELBO convergence with K = 20

Figure 15: Out-of-sample predictive score and number of topics

14


	Introduction and Motivations
	The Model, ELBO and Maximum Energy Path (MEP)
	ELBO Loss Landscape Visualization
	Experimental Results and Discussion
	Finding Local Maxima. 
	Path Construction and Hyperparameters. 
	Quality of parameters
	Visualization
	Interpretation of topics and words

	Criticism
	Future Works

