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Abstract

In this paper, we introduce novel memory plasticity mechanisms called hybrid
memory plasticity that can combine any sequences of multiplicative and additive
plasticities, alongside innovative readout layers for effective memory storage re-
trieval, for addressing tasks that require temporal integration and classification. Our
approach is applied to a continual scene detection task, where each scene comprises
multiple frames requiring both memory integration and accurate classification. We
have shown that our new biologically plausible neural network achieves SoTA
result on the task we defined. Furthermore, we conduct a detailed neural net-
work interpretability analysis to elucidate the mechanisms underlying the proposed
memory plasticities. This framework provides valuable insights into biologically
inspired architectures and their applications in continual learning, offering a deeper
understanding of neuroscience principles.

1 Introduction

Understanding and recognizing sequences of patterns in dynamic environments is a fundamental
capability of the human brain. Many everyday tasks, such as determining whether a sequence
of events has been encountered before, rely on the ability to integrate temporal information and
classify familiarity. This capability is rooted in synaptic plasticity—the brain’s dynamic ability to
strengthen or weaken synaptic connections in response to neural activity. Through this remarkable
adaptability, humans can efficiently learn from experience, recall past events, and generalize across
similar situations.

In recent years, theoretical neuroscience have sought to replicate these capabilities from a computa-
tional perspective. Synaptic plasticity has been studied extensively, with various forms of plasticity
demonstrating unique roles in memory, learning, and decision-making. Among these, additive plas-
ticity, such as Hebbian and anti-Hebbian mechanisms, has shown impressive performance in pattern
recognition and classification tasks by dynamically adjusting synaptic weights to capture input-output
relationships. For instance, Tyulmankov et al. (2022) demonstrated how anti-Hebbian plasticity could
be used for continual familiarity detection tasks, with just a single linear readout layer.

Complementing additive approaches, multiplicative plasticity has emerged as a promising mechanism
for integrating temporal information. Unlike traditional methods that rely on recurrent architectures,
multiplicative plasticity enables the efficient encoding of sequential patterns through weight modula-
tions driven by activity-dependent scaling. Aitken and Mihalas (2023) introduced a neural model
leveraging multiplicative plasticity, showcasing its ability to integrate temporal dependencies without
requiring explicit recurrent structures.

While additive plasticity is effective for precise classification and multiplicative plasticity excels
at temporal integration, combining these mechanisms is not as straightforward as it might seem.
Their interaction introduces challenges in balancing memory integration and feature discrimination,



necessitating the development of advanced readout architectures to fully harness their complementary
strengths.

In this work, we propose a novel framework that combines multiplicative and additive plasticity
for the continual scene detection task. To address the complexities of integrating these plasticity
mechanisms, we design sophisticated readout architectures that enhance the network’s ability to
effectively retrieve relevant information in the plasticity matrix. Our contributions are as follows:

1. Introduced various forms of hybrid plasticity that combines any sequences of multiplicative
and additive mechanisms for temporal integration and classification.

2. Developed advanced readout methods for accurate retrieval in this hybrid plasticity matrix.

3. Demonstrated the effectiveness of our framework on the continual scene detection task,
achieving SoTA performance in retrieval accuracy and maximal retrieval length.

4. Conducted an interpretability analysis to uncover the underlying mechanisms of this novel
memory plasticity.

2 Problem Formulation

We propose a problem called continual scene detection, which requires the integration of temporal
information, classification, and retrieval to achieve high performance. The task challenges a model to
differentiate between familiar and novel scenes in a dynamic, evolving sequence. Specifically:

A frame f is defined as a vector in Rn, where each component is sampled from a Bernoulli
distribution with probability p = 0.5, resulting in possible outcomes from the set {−1, 1}.
A scene s consists of n = 4 frames. The first frame f1 is generated randomly, and the subsequent
frames are derived from f1 with a variation rate of 0.1. Specifically, this means that 10% of the
components of f1 are randomly flipped to create each subsequent frame, introducing controlled
variability.

We continuously generate a stream of scenes over time. At a given time point t = R, a decision is
made to either generate a new scene or reuse a previous one to create a familiar scene. If a familiar
scene is chosen, it is created by randomly permuting the scene from time t = T −R. However, if
a familiar scene is generated at time t = T , it will not be generated again at t = T +R to prevent
repetition beyond a certain point.

The objective is to continuously determine whether a presented scene is familiar (previously seen
with some variation) or novel (newly generated).

Figure 1: Caption of the graph

3 Novel Memory Plasticity

Memory networks require mechanisms to store and update information over time. We propose three
distinct types of plasticity mechanisms that can be incorporated into a fully connected neural network
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layer: additive plasticity, multiplicative plasticity, and a stacked approach. These mechanisms
determine how the network’s weights change in response to incoming stimuli.

3.1 Basic Architecture

The Memory Plasticity Layer consists of a standard weight matrix W1 and a dynamic plasticity
matrix P1(t) that changes over time. The layer receives input vector x(t) at each timestep t and
produces hidden layer activations h1(t) through one of three plasticity mechanisms.

3.2 Plasticity Mechanisms

3.2.1 Multiplicative Plasticity (M)

In multiplicative plasticity, the plastic component modulates the standard weights through element-
wise multiplication:

h1(t) = ϕ ((W1 · P1(t))x(t) +W1x(t) + b1) (1)

This can be interpreted as the plasticity matrix scaling the effectiveness of each synapse while
preserving its sign.

3.2.2 Additive Plasticity (A)

Additive plasticity directly adds the plastic component to the standard weights:

h1(t) = ϕ ((W1 + P1(t))x(t) + b1) (2)

This mechanism allows the plasticity to modify both the magnitude and sign of the effective weights.

3.2.3 Stacked Plasticity (Stack)

The stacked approach combines both mechanisms by splitting the hidden layer into two parts:

• Upper half: Uses multiplicative plasticity

• Lower half: Uses additive plasticity

This approach allows the network to leverage the benefits of both plasticity types.

3.3 Plasticity Matrix Update Rule

The plasticity matrix P1(t) is updated continuously during training and inference using the following
rule:

P1(t) = λP1(t− 1) + η ⊙
(
h1(t)x(t)

T
)

(3)

where:

• λ is the decay factor controlling the retention of prior plasticity updates.

• ⊙ represents element-wise multiplication.

• η determines the learning rates for plasticity and can take three forms:

– Scalar η: A uniform scalar controlling the overall plasticity rate.
– Neuron-wise η: A vector matching the dimensions of h1(t), where each element

controls plasticity for a specific neuron.
– Synaptic-wise η: A matrix identical in size to h1(t)x(t)

T , allowing per-synapse
control of learning rates.
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(a) Fully Connected Readout (b) Nonlinear Readout

(c) Memory Based Readout (d) Dynamic Read Out

Figure 2: The four types of readouts

4 Readout Layer

For the readout layer, we present four different versions: Fully Connected readout, Nonlinear readout,
Memory Based readout, and Dynamic readout:

• Fully Connected readout (FC): This version is a plain fully connected layer, represented
as follows:

σ (Wfh1(t) + bf ) (4)

• Nonlinear readout (Nonl): This version transforms h1(t) with a nonlinear layer before a
FC transformation:

σ (W2h1(t) + b2) , (5)
σ (Wfh2(t) + bf ) (6)

• Memory Based readout (Memo): This version leverages the benefit of additional layers
of memory for improved performance. This transformation, identical to the one performed
by the first memory layer, is denoted by h2 = h(W2,P2(t)). Subsequently, we apply the
same FC layer transformation:

σ (Wfh2(t) + bf ) (7)
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• Dynamic readout (Dyn): This version is inspired by the observation that the decay rate λ
in Memo is extremely low, which signifies minimal memory retention. Dyn addresses this
issue by modifying the update rule for the plasticity matrix as follows:

P (t) = η ⊙
(
h1(t)x(t)

T
)

(8)

This change results in a dynamic readout of the current time step. Apart from this mod-
ification, everything else in Dyn mirrors Memo. The dynamic transition is denoted by
h2 = h(W2,D(t)). Following this, the same FC layer transformation is applied:

σ (Wfh2(t) + bf ) (9)

5 Meta-Learning and Curriculum Training

Meta-learning Tyulmankov et al. (2021) enables our memory network to optimize not only for specific
tasks but also for mechanisms such as synaptic plasticity rules and network architectures. Specifically,
Meta-learned plasticity rules, such as anti-Hebbian updates, improve memory retention and capacity.
Specifically, we will try to meta learn the following parameters:

• Static weight matrices W and Bias vectors b
• Synaptic decay rate λ

• Plasticity rate η

Where those parameter helps us to do any type of continual familiar scene detection tasks by updating
the plasticity matrix P .

5.1 Curriculum Training

Following Tyulmankov et al. (2022), we leverage a curriculum training algorithm that progressively
introduces increasing levels of task difficulty, improving model convergence for tasks requiring longer
memory retention. In the case of continual familiarity detection, the repeat interval R is incrementally
increased during training until the network stabilizes.

Algorithm 1 Curriculum Training

Input: Initial repeat interval R0, maximum iterations T , accuracy threshold θ
1: Initialize network parameters and R← R0

2: while training not converged do
3: Train on dataset with current R for T iterations
4: if accuracy ≥ θ then
5: R← R+ 1
6: else
7: Break
8: end if
9: end while

10: return Optimized network parameters

The maximum capacity Rmax is defined as the largest value of R for which the familiarity detection
accuracy remains above 99%.

6 Results

6.1 One Layer Memory Plasticity

To maintain an equitable comparison, we constrain the number of dynamic neurons to be equivalent
across all models. In our investigation, we considered models with dynamic neuron counts of 50 and
100. For both, we have just one layer of memory plasticity and one layer of read out. Their respective
performance metrics are detailed in the table below:

Analyzing the table, we make the following observation:
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Max R

M A Stack

Size
Net

FC Nonl
Dyn Memo

FC Nonl
Dyn Memo

FC

M A M A M A M A

50 5 7 9 9 8 9 6 4 4 4 4 4 6

100 9 10 12 13 9 14 9 7 5 5 5 5 7
Table 1: Performance metrics for different dynamic neuron sizes

1. Across most types of readouts, M outperforms A.

2. M benefits from more intricate readouts and scaling. Conversely, the performance of A
diminishes with more complex readouts.

3. The most noteworthy performance is achieved by the memory layer of M, combined with
either Dyn or Memo readout layers.

4. Our methods show a 55.6% increasement in max retrieval rate compare to previous SoTA
on average.

5. For scaling behavior: our method scales 66.7% faster than networks with only additive
plasticity and 25% faster than those with only multiplicative plasticity.

A graph of performance is here:

Figure 3: Performance across all networks and sizes
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6.2 Multi Layer Memory plasticity

Here we study the effect of multi layer memory plasticity.

Network Name neurons per layer Rmax
MA 25, 25 7
MM 25, 25 6

MAA 17, 17, 17 2
MAM 17, 17, 17 5
MMA 17, 17, 17 4
MMM 17, 17, 17 3

MMMA 13, 13, 13, 13 2
MMMA 20, 15, 10, 5 4

Table 2: neurons = 50

Network Name neurons per layer Rmax
MA 60, 60 12

MAA 40, 40, 40 5
MAM 40, 40, 40 5
MMA 40, 40, 40 10
MMM 40, 40, 40 6

MMMA 30, 30, 30, 30 8
MMMA 40, 30, 20, 10 6

Table 3: neurons = 120

Figure 4: Accuracy rate with different R

We see that stacking the layer naively does not give us better results.

7 Interpreting the neural network

7.1 Memory Network

In this section, we address the possible reasons why multiplicative plasticity matrix has a better
performance. From 5, we can see that a complex readout hurts the performance of A networks,
whereas a complex readout helps the performance of M networks.

To figure out why the network works, we plot the hidden layer activities across time, the eta matrix, the
weight matrix, the actual weight/plasticity across time. Specifically, we choose the Memo Network
with M memory and A readout here67.

We plot the actual weight and the plasticity matrix with t from 74-77, where at 74,75 the network
output 0 and 76,77 the network output 189

Notice that the M is dominated by several elements and rarely changes. So a hypothesis would be
that most of the identification work were done by the dynamic readout, whereas M merely serves as a
memory source.
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Figure 5: M vs A

Figure 6: Hidden Layers Across Time

7.2 Plasticity Rate Analysis

As we can see in 4, some of the plasticity rate got decayed to 0, which means they are trying to forget
rather than to memorize as much as possible, which is counter intuitive. However, taking a closer
look, we find out that most of the diminishing rate are coming from additive plasticity matrix where
multiplicative plasticity matrix with closing to 1 retention rate. This further confirms our hypothesis
that multiplicative matrix is handling all the memory perservation where as the additive matrix is
simply performing a readout role.
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(a) eta matrix of Memo M A 50/50 (b) weight matrix of Memo M A 50/50

Figure 7: Dyn RO MA 50/50

(a) T=74

(b) T=75

(c) T=76

(d) T=77

Figure 8: Actual weight

(a) T=74

(b) T=75

(c) T=76

(d) T=77

Figure 9: Plasticity
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Network Name neurons per layer λ1 λ2 λ3 λ4 Rmax
1LA 50 0.97 x x x 4
1LM 50 0.95 x x x 3

MAhh 25, 25 0.99 0.19 x x 7
MA 60, 60 0.99 0.23 x x 12

MMhh 25, 25 0.99 0.0039 x x 6
MMss 25, 25 0.99 0.16 x x 3

AA 25, 25 0.84 0.79 x x 2
AM 25, 25 0.81 0.86 x x 2

MAA 17, 17, 17 0.88 0.71 0.51 x 2
MAA 40, 40, 40 0.96 0.74 0.33 x 5
MAM 17, 17, 17 0.98 0.25 0.97 x 5
MAM 40, 40, 40 0.96 0.6 0.46 x 5
MMA 17, 17, 17 0.98 0.97 0.09 x 4
MMA 40, 40, 40 0.99 0.99 0.14 x 10
MMM 17, 17, 17 0.93 0.96 0.26 x 3
MMM 40, 40, 40 0.97 0.97 0.271 x 6

MMMA 13, 13, 13, 13 0.86 0.86 0.40 0.90 2
MMMA 20, 15, 10, 5 0.97 0.82 0.18 0.98 4
MMMA 30, 30, 30, 30 0.99 0.89 0.98 0.16 8

Table 4: Plasticity rate analysis
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